Ammonia assimilation by rhizobium cultures and bacteroids.
نویسندگان
چکیده
The enzymes involved in the assimilation of ammonia by free-living cultures of Rhizobium spp. are glutamine synthetase (EC. 6.o.I.2), glutamate synthase (L-glutamine:2-oxoglutarate amino transferase) and glutamate dehydrogenase (ED I.4.I.4). Under conditions of ammonia or nitrate limitation in a chemostat the assimilation of ammonia by cultures of R. leguminosarum, R. trifolii and R. japonicum proceeded via glutamine synthetase and glutamate synthase. Under glucose limitation and with an excess of inorganic nitrogen, ammonia was assimilated via glutamate dehydrogenase, neither glutamine synthetase nor glutamate synthase activities being detected in extracts. The coenzyme specificity of glutamate synthase varied according to species, being linked to NADP for the fast-growing R. leguminosarum, R. melitoti, R. phaseoli and R. trifolii but to NAD for the slow-growing R. japonicum and R. lupini. Glutamine synthetase, glutamate synthase and glutamate dehydrogenase activities were assayed in sonicated bacteroid preparations and in the nodule supernatants of Glycine max, Vicia faba, Pisum sativum, Lupinus luteus, Medicago sativa, Phaseolus coccineus and P. vulgaris nodules. All bacteroid preparations, except those from M. sativa and P. coccineus, contained glutamate synthase but substantial activities were found only in Glycine max and Lupinus luteus. The glutamine synthetase activities of bacteroids were low, although high activities were found in all the nodule supernatants. Glutamate dehydrogenase activity was present in all bacteroid samples examined. There was no evidence for the operation of the glutamine synthetase/glutamate synthase system in ammonia assimilation in root nodules, suggesting that ammonia produced by nitrogen fixation in the bacteroid is assimilated by enzymes of the plant system.
منابع مشابه
The Rhizobium etli amtB gene coding for an NH4+ transporter is down-regulated early during bacteroid differentiation.
During development of root nodules, Rhizobium bacteria differentiate inside the invaded plant cells into N2-fixing bacteroids. Terminally differentiated bacteroids are unable to grow using the ammonia (NH3) produced therein by the nitrogenase complex. Therefore, the nitrogen assimilation activities of bacteroids, including the ammonium (NH4+) uptake activity, are expected to be repressed during...
متن کاملNifA-dependent expression of glutamate dehydrogenase in Rhizobium etli modifies nitrogen partitioning during symbiosis.
Constitutive expression of foreign glutamate dehydrogenase in Rhizobium etli inhibits bean plant nodulation (A. Mendoza, A. Leija, E. Martínez-Romero, G. Hernández, and J. Mora. Mol. Plant-Microbe Interact. 8:584-592, 1995). Here we report that this inhibition is overcome when controlling gdhA expression by NifA, thus delaying the GDH activity onset after nodule establishment. Expression of gdh...
متن کاملEctopic Expression of the Rhizobium etli amtB Gene Affects the Symbiosome Differentiation Process and Nodule Development
Under conditions of nitrogen limitation, soil bacteria of the genus Rhizobium are able to induce the development of symbiotic nodules on the roots of leguminous plants. During nodule organogenesis, bacteria are released endocytotically inside the invaded plant cells where they differentiate into their endosymbiotic form called bacteroids. Bacteroids surrounded by a plant-derived peribacteroid m...
متن کاملEnzymes of ammonia assimilation and ureide biosynthesis in soybean nodules: effect of nitrate.
The effect of nitrate on N(2) fixation and the assimilation of fixed N(2) in legume nodules was investigated by supplying nitrate to well established soybean (Glycine max L. Merr. cv Bragg)-Rhizobium japonicum (strain 3I1b110) symbioses. Three different techniques, acetylene reduction, (15)N(2) fixation and relative abundance of ureides ([ureides/(ureides + nitrate + alpha-amino nitrogen)] x 10...
متن کاملRhizobium etli CE3 bacteroid lipopolysaccharides are structurally similar but not identical to those produced by cultured CE3 bacteria.
Rhizobium etli CE3 bacteroids were isolated from Phaseolus vulgaris root nodules. The lipopolysaccharide (LPS) from the bacteroids was purified and compared with the LPS from laboratory-cultured R. etli CE3 and from cultures grown in the presence of anthocyanin. Comparisons were made of the O-chain polysaccharide, the core oligosaccharide, and the lipid A. Although LPS from CE3 bacteria and bac...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of general microbiology
دوره 86 1 شماره
صفحات -
تاریخ انتشار 1975